PembangunanPembangkit Listrik Tenaga Uap (PLTU) Cilacap di Karangkandri, Kabupaten Cilacap, Jawa Tengah diharapkan dapat mengatasi krisis listrik jangka pendek. PLTU berkapasitas 600 Megawatt (MW) -- 2 X 300 MW -- yang dibangun konsorsium investor dari Republik Rakyat Cina (RRC), Cengda Engineering Corporation bekerja sama dengan PT Sumber Abstract Pembangkit Listrik Tenaga Uap PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Tujuan penelitian ini adalah untuk mengetahui daya yang dibangkitkan oleh turbin dan energi kalor yang dibutuhkan oleh boiler. Metode penelitian yang dilakukan adalah metode observasi dan pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut kemudian dilakukan perhitungan pada data yang ada. Hasil penelitian boiler menunjukan SUPERHEATED STEAM PRESSURE pada hari pertama sebesar Mpa dan SUPERHEATED STEAM TEMP sebesar C serta daya maksimum yang dibangkitkan turbin sebesar MW. Hasil perhitungan menunjukan daya maksimum turbin yang dibangkitkan selama satu jam adalah 246,526 MW sedangkan pada hari pertama panas spesifik yang dibutuhkan boiler qboiler adalah sebesar KJ/kg. Kesimpulan besar daya maksimum yang dibangkitkan oleh turbin uap pada PLTU selama seminggu adalah 241,424 MW sedangkan kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW. Lebihlanjut, PT Perusahaan Listrik Negara (Persero) atau PLN juga tengah mempercepat upaya peralihan energi bersih yang signifikan menjelang perhelatan Konferensi Tingkat Tinggi atau KTT G20. PLN menargetkan inisiatif awal untuk menghentikan operasi pembangkit listrik tenaga uap atau PLTU dapat diimplementasikan sebelum 2030.
Pembangkit Listrik Tenaga Uap PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Tujuan penelitian ini adalah untuk mengetahui daya yang di bangkitkan oleh turbin dan energi kalor yang di butuhkan oleh boiler. Metode penelitian yang dilakukan adalah metode observasi dan pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut kemdian dilakukan perhitungan pada data yang ada. Hasil penelitian boiler menunjukan SUPERHEATED STEAM PRESSURE pada hari pertama sebesar Mpa dan SUPERHEATED STEAM TEMP sebesar C serta daya maksimum yang dibangkitkan turbin sebesar MW. Hasil perhitungan menunjukan daya maksimum turbin yang di bangkitkan selama satu jam adalah 246,526 MW sedangkan pada hari pertama panas spesifik yang di butuhkan boiler qboiler adalah sebesar KJ/kg. Kesimpulan besar daya maksimum yang di bangkitkan oleh turbin uap pada PLTU selama seminggu adalah 241,424 MW sedangkan kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW. Discover the world's research25+ million members160+ million publication billion citationsJoin for free ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2024 ANALISA PEMBANGKIT TENAGA LISTRIK DENGAN TENAGA UAP DI PLTU Hammada Abbas1, Jamaluddin2, M. Arif3,Amiruddin4 1,2,3,4Program Studi Teknik Mesin, Fakultas Teknik, Universitas Islam Makassar Jl. Perintis Kemerdekaan No. 29 Makassar, Indonesia 90245 Email amiruddintm453 ABSTRAK Pembangkit Listrik Tenaga Uap PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Tujuan penelitian ini adalah untuk mengetahui daya yang di bangkitkan oleh turbin dan energi kalor yang di butuhkan oleh boiler. Metode penelitian yang dilakukan adalah metode observasi dan pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut kemdian dilakukan perhitungan pada data yang ada. Hasil penelitian boiler menunjukan SUPERHEATED STEAM PRESSURE pada hari pertama sebesar Mpa dan SUPERHEATED STEAM TEMP sebesar C serta daya maksimum yang dibangkitkan turbin sebesar MW. Hasil perhitungan menunjukan daya maksimum turbin yang di bangkitkan selama satu jam adalah 246,526 MW sedangkan pada hari pertama panas spesifik yang di butuhkan boiler qboiler adalah sebesar KJ/kg. Kesimpulan besar daya maksimum yang di bangkitkan oleh turbin uap pada PLTU selama seminggu adalah 241,424 MW sedangkan kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW. Kata kunci Boiler dan Turbin Steam Power Plant PLTU is a plant that relies on the kinetic energy of steam to produce electricity. The purpose of this study is to determine the power generated by turbines and the heat energy needed by the boiler. The research method used is the method of observing and grouping the required data sources such as conditions and patterns of steam production in boilers, turbines and identifying these data and then calculating the existing data. The results of the boiler study showed SUPERHEATED STEAM PRESSURE on the first day of 9,652 Mpa and SUPERHEATED STEAM TEMP of 515,367 C and the maximum power generated by the turbine was 110,758 MW. The calculation results show the maximum power of the turbine generated for one hour is 246,526 MW while on the first day the specific heat needed by the boiler qboiler is 3, KJ/kg. Conclusion The maximum power generated by a steam turbine at a power plant during the week is MW while the heat energy capacity Qboiler produced by the boiler is 278,576 MW. Keywords Boilers and Turbine ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 PENDAHULUAN Kendati penggunaan Bahan Bakar Minyak BBM untuk pembangkit listrik terus menurun. Hal ini sejalan dengan target penurunan penggunaan Bahan Bakar Minyak BBM untuk pembangkit listrik mencapai 0,4% pada tahun 2025 Sofyan 2018. Di negara kita, perusahaan pemasok listrik bagi pelanggan masyarakat adalah Perusahaan Listrik Negara PLN. Atas pemakaian listrik oleh pelanggan PLN dikenakan biaya tertentu dalam rentang waktu satu bulan. Biaya listrik yang digunakan oleh pelanggan dihitung berdasarkan banyaknya energi listrik yang digunakan dalam perhitungan PLN, satuan energi listrik yang digunakan adalah KWH Kilo Watt Hour atau dalam bahasa Indonesia kilo watt jam Sofyan 2018. Pembangkit listrik tenaga uap menggunakan berbagai macam bahan bakar terutama batu bara dan minyak bakar, serta MFO untuk start up awal Hammada Abbas 1976 . Keuntungan utama penggunaan pembangkit listrik berbahan bakar batu bara adalah dapat beroperasi sepanjang waktu selama masih tersedianya bahan bakar. Kehandalan pembangkit ini tinggi karena dalam operasinya tidak bergantung pada alam seperti halnya PLTA. Mengingat waktu start-nya yang cepat tetapi ongkos bahan bakarnya tergolong mahal, namun investasi awal pembangunan relative murah sehingga dapat memenuhi kebutuhan energi listrik daerah terisolir yang mendesak Nurmalita 2012. Tujuan penelitian ini untuk mengetahui daya maksimum yang dibangkitkan turbin dan mengetahui kapasitas air fluida yang dapat dipanaskan oleh Boiler. Alat Objek yang dilakukan pengujian kinerja pada penelitian ini adalah Pembangkit Listrik Tenaga Uap. Alat ukur yang dipergunakan dalam penelitian ini adalah semua alat ukur sensor yang terpasang diruang pengendali control room dan alat ukur yang terpasang di lapangan. Bahan Bahan yang dipergunakan dalam kegiatan uji kinerja ini adalah Ketel Uap, Super Heater dan Turbin Uap. Metode Analisis Adapun metode penelitian yang dilakukan adalah pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut. Setelah itu dilakukan analisi data untuk menentukan metode pengambilan data dalam kurun 1 – 2 bulan Sehingga data tersebut dapat dievaluasi pada tahap pemeriksaan menyeluruh. Setelah ditemukan metode pengambilan data, selanjutnya dilakukan pemeriksaan menyeluruh dengan melakukan pengamatan terhadap alat ukur yang digunakan dan melakukan analisa, baik terhadap alat yang digunakan secara kontinu maupun alat yang bersifat tidak tetap. Tahapan selanjutnya dari pemeriksaan menyeluruh ini adalah melakukan pemeriksaan dan pencacatan atau pengambilan data. Pengambilan data dilakukan dengan cara yaitu Pengumpulan data sekunder Data sekunder merupakan data penunjang yang diperoleh dari pihak instansi termasuk data yang tidak dapat diukur di ruang pengendali control room dan data hasil pengamatan langsung. Dalam metode analisis ataupun perhitungan data pada Turbin dan Boiler PLTU yang tidak terlepas dari tujuan dari penelitian ini maka peneliti menggunakan beberapa persamaan berikut untuk menghitung kapasitas air fluida yang dipanaskan oleh Boiler pada PLTU. Penulis menggunakan persamaan sebagai berikut 1. Panas spesifik yang dibutuhkan di Boiler qBoiler QBoiler = h1-h2 ........................................... 1 2. Energi kalor Boiler QBoiler. QBoiler = ...................................... 2 Untuk menghitung daya yang dibangkitkan oleh Turbin pada PLTU penulis menggunakan persamaan sebagai berikut 1. Laju spesifik keluaran Turbinw .............................................................. W = h1-h2............................................................................. 3 2. Daya yang di bangkitkan oleh Turbin. WT = ................................................ 4 HASIL DAN PEMBAHASAN ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2026 Data hasil penelitian diambil berdasarkan beban aktual maksimum di setiap harinya selama seminggu. Data hasil penelitian diambil dengan metode observasi yang digunakan untuk mempermudah dalam penyelesaian permasalah dalam pengambilan data di PLTU adalah sebagai berikut Beban generator merupakan beban aktual maksimum dalam 24 jam nilai tekanan dan temperatur pada HP turbin, IP turbin dan LP turbin merupakan daya maksimum steam Flow dan entalpi keluaran pada IP turbin dan LP turbin merupakan interpolasi dengan data manual book. Tabel 1. Data Awal Boiler Tabel 2. Data Awal Turbin Berdasarkan data pada tabel 1 dapat dihitung kapasitas kalor kalor yang dihasilkan oleh boiler, dan pada tabel 2 dapat dihitung daya yang dihasilkan oleh turbin. Kapasitas kalor yang dihasilkan diboiler dapat diketahui dengan menggunakan persamaan 1 dan 2. Berikut adalah hasil perhitungan Boiler selama seminggu. Tabel 3. Hasil yang diperoleh dari perhitungan Boiler Berdasarkan penelitian yang dilakukan oleh peneliti terhadap analisis pembangkit listrik dengan tenaga uap di PLTU, maka diketahui hasil perhitungan kinerja dari boiler data yang diambil pada hari pertama di jam 1800 pm. Pada hari pertama panas yang di hasilkan oleh spesifik boiler adalah sebesar 3212,2 kJ/kg, adalah untuk menghasilkan nilai energi kalor boiler dihari pertama yang memperole nilai sebesar 257,252 MW. Sehingga dalam penelitian yang dilakukan selama 1 minggu dapat diperoleh nilai rata-rata dari kondisi spesifik yang dibutuhkan di boiler adalah sebesar kJ/kg sedangkan nlai rata-rata dari energi kalor boiler yang dihasilkan selama 1 minggu adalah sebesar 278,576 MW. Menurut Cahyo Adi Basuki, dkk 2011 besarnya laju aliran massa uap lanjut superheated yang ada dalam boiler mengalami perubahan setiap saat. Hal ini mengakibatkan adanya perubahan laju aliran massa bahan bahan bakar yang berbede-beda setiap saat mengikuti besarnya perubahan beban. Akibat yang ditimbulkan dari peristiwa ini adalah efesiensi termal atau efesiensi siklus juga mengalami perubahan setiap saat sesuai dengan perubahan beban. Menurut Dendi Junaedi 2010 kecendrungan adanya penambahan feedwater heater akan mengurangi kalor yang masuk boiler dan reheater mungkin dengan mengekstraksi uap yang melalui tingkatan turbin pada beberapa feedwater heater akan menghemat rugi-rugi kalor yang terjadi selama uap mengalir di aliran sistem. Daya maksimum yang dibangkitkan oleh turbin selama seminggu adalah sebagai berikut Tabel 4. Hasil yang diperoleh dari perhitungan turbin. ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2027 Dari hasil pengamatan dan perhitungan data turbin dan boiler berdasarkan beban maksimum yang diambil di PLTU yang dilakukan diporoleh variasi nilai yang berbeda-beda di setiap harinya. Berdasarkan data-data perhitungan yang diporoleh maka dapat disajikan pembahasan mengenai persentase perubahan nilai w dan WT, serta nilai qBoiler dan QBoiler. Boiler pada beban maksimun PLTU tabel 3 ditunjukan hasil perhitungan boiler selama seminggu diperoleh nilai qBoiler sebesar kJ/kg, dari nilai spesifik tersebut diperoleh QBoiler sebesar 257,252 MW. Sedangkan qBoiler maksimun yang dihasilkan oleh boiler pada tanggal 14 juli 2019 pukul 2100PM sebesar kJ/kg dan qBoiler minimun boiler pada tanggal 12 juli 2019 pukul 1800PM sebesar kJ/kg. Untuk nilai QBoiler maksimun yang dihasilkan oleh boiler pada 15 juli 2019 jam 0100 PM merupakan nilai maksimun sebesar 288,869MW, sedangkan nilai minimum QBoiler pada tanggal 12 juli pukul 2100PM sebesar 257,252MW. Nilai rata – rata qBoiler selama seminggu sebesar dan nilai rata – rata QBoiler selama seminggu sebesar 278,576MW. Pada tabel 4 ditunjukan hasil perhitungan turbin selama seminggu pada tanggal 12 juli 2019 pukul 1800PM diperoleh nilai w sebesar dan nilai Wt sebesar 246,526MW. Dari hasil perhitungan selama seminggu nilai rata – rata w sebesar 246,526 kJ/kgB, wt sebesar 241,424 MW. Menurut Riyki Apriandi 2016 faktor yang dapat mempengaruhi kinerja dari turbin uap yaitu menurunnya performa peralatan PLTU seperti peralatan pemanas / heater air demin diantaranya HP heater, LP heater, deaerator. Selain itu performa kondensor juga sangat mempengaruhi, karena dikondensor terjadi fase perubahan fluida dari uap menjadi air nantinya air tersebut digunakan kembali untuk dipanaskan di boiler menjadi superheated untuk memutar turbin. KESIMPULAN Berdasarkan analisa perhitungan data yang diperoleh dari hasil penelitian di PLTU Jeneponto pada tanggal 12 juli 2019 dapat di simpulkan sebagai berikut 1. Besar daya maksimum yang di bangkitkan oleh turbin uap pada PLTU Jeneponto selama seminggu adalah 241,424 MW 2. Kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW UCAPAN TERIMA KASIH Pertama-tama kami ucapkan terima kasih banyak kepada orang tua dan ketua jurusan program studi yang selalu memberikan arahan dan masukannya sampai terselesainya penelitian ini. DAFTAR PUSTAKA Abbas, H. 1976 “Neraca Turbin UAP” skripsi Fakultas Teknik Ujung Pandang, Universitas Hasanuddin. Apriandi, R., Mursadin, A. 2016 “Analisis Kinerja Turbin Uap Berdasarkan Performance Test PLTU PT. Indocement P-12 Tarjun” Jurnal Kinematika. pp 37-46 Junaedi, D. 2010 “Analisis Kinerja Boiler Pada PLTU Unit 1 PT. Semen Tonasa” Jurnal Sinergi Jurusan Teknik Mesin 74, 85. Junial, H., Djoko, Y. W. 2018 “Analisa Kerja Boiler Feed Pump PLTU Cirebon 1X660 Mw”, Program Studi Teknik Mesin, Universitas 17 Agustus 1945 Cirebon. Munson, R. B., Donald, F., Okiishi, H. T. 2015 “Mekanika Fluida” ; Budiarso. – Ed. 4, - Jakarta Erlangga. Pudjanarso, A., Nursuhud, D. 2013 “Mesin Konveksi Energi” Editor FL. Sigit Suyantoro Edisi Ketiga – Yogyakarta. Rohmat, A. T., Made, S., Junaidi, D. 2010 “Kesetimbangan Massa Dan Kalor Serta Efesiensi Pembangkit Listrik Tenaga Uap Pada Berbagai Perubahan Dengan Menvariasikan Jumlah Feedwater Heater,” Jurusan Teknik Industri dan Mesin, Fakultas Teknik, Universitas Gadjah Mada Zulfiana, E., Musyafa, A. 2013 “Analisis Bahaya dengan Metode Hazop dan Manajemen Risiko ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2028 pada Steam Turbin PLTU di Unit 5 Pembangkitan Listrik Paiton PT. YTL Jawa Timur” Jurnal Teknik Pomits. ... Salah satu sumber pembangkit listrik yang ada di Indonesia ialah Pembangkit Listrik Tenaga Uap PLTU yang menggunakan batu bara sebagai bahan utamanya. Proses pemanasan untuk menghasilkan uap sangat penting dalam proses pembangkitan listrik dari perubahan energi uap panas menjadi energi mekanik gerak turbin kemudian diteruskan menjadi energi listrik [1]. ...... Pembangkit Listrik Tenaga Uap PLTUPembangkit listrik tenaga uap adalah pembangkit yang mengandalkan energi kinetik uap untuk menghasilkan tenaga listrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan dengan turbin dimana untuk menjalankan turbin dibutuhkan energi kinetik uap panas atau kering[1]. Di PLTU, energi primer diubah menjadi energi listrik sebagai bahan bakar. Bahan bakar yang digunakan pada tahun dapat berupa batubara padat, minyak bumi cair, atau gas. ...Novia Utami PutriGenerator merupakan salah satu komponen penting pada proses pembakitan energy listrik karena fungsi utamanya sebagai pengubah energi mekanik menjadi energy listrik. Gangguan satu fasa ketanah merupakan gangguan hubung singkat yang terjadi karena flashover antara penghantar fasa dan tanah. Pemasangan system pentanahan NGR atau Neutral Grounding Resistor pada generator digunakan untuk mengurangi gangguan arus satu fasa ke tanah akibat berbagai macam gangguan. Mengalirnya arus satu fasa ketanah juga dapat menimbulkan arus transient yang mengurangi kinerja generator itu sendiri. Penelitian ini bermaksud untuk menganalisa kinerja sistem pembumian NGR pada generator dari arus gangguan satu fasa ke tanah pada PLTU PT Sugar Labinta Lampug Selatan. Dengan melakukan analisa menggunakan simulasi ETAP untuk melihat kualitas system pembumian apabila terjadi gangguan satu fasa ke tanah dan juga pada kondisi yang normal. Hasil yang didapat dari penelitian ini yaitu, pada sistem pembumian solid diketahui hasil arus gangguan hubung singkat sebesar A, kemudian system pembumian dilakukan reduksi dengan menggunakan NGR sehingga nilai arus hubung singkatnya menjadi kisaran 847 A. Sehingga generator dapat tetap dalam kondisi yang aman dan stabil ketika menghadapi arus gangguan hubung singkat satu fasa ke tanah. Kata kunci — Listrik, Pembumian, Gangguan, NGR, Simulasi PangkungHerman NawirAditya Nugraha Adji SantosoThis study aims to determine the effect of changes in generator load on efficiency performance in steam power plants and to determine the amount of input power in the boiler. Data collection was carried out at PT. Bosowa Energi PLTU Jeneponto. The data are the power output, fuel consumption, and the calorific value of the fuel. Then perform data analysis by calculating input power and efficiency. From the result of the study, the highest efficiency is on May 20, 2018 at with a load of MW, namely and the lowest efficiency is on May 12, 2018 at with a load of MW, namely The highest boiler input power based on the analysis results was on May 3, 2018 at namely MW, and the lowest boiler input power based on the analysis was on May 15, 2018 at namely Apriandi Aqli MursadinThis study aims to determine the performance of steam turbine PT. Indocement Tarjun Plant 12 by comparing the results of data obtained during each performance test in 1999, 2016, 2017, and 2018. This research data is taken from the control room of PT. Indocement Tarjun, variable data obtained in the form of load, main inlet steam temperature, main inlet steam pressure, HP heater feed outlet temperature, HP heater feed outlet pressure, main steam flow, and turbine by pass flow. The data is processed to get the turbine heat rate and the efficiency per time of each performance test and then averaging the data results over time, then comparing the turbine heat rate and the average efficiency of each performance test. The calculation of turbine heat rate using heat & mass balance method, turbine efficiency is obtained by comparing the energy of 1 kW with turbine heat rate and multiplying 100%. The result of the average heat turbine calculation per performance test ie August 1999 is April 2016 2,537, June 2017 and May 2018 The average value of turbine efficiency in August 1999 was April 2016 June 2017 May 2018 Turbine power plant performance of PT Indocement Tarjun Plant 12 decreased from 1999 to 2018 by AbbasAbbas, H. 1976 "Neraca Turbin UAP" skripsi Fakultas Teknik Ujung Pandang, Universitas Kinerja Boiler Pada PLTU Unit 1 PT. Semen TonasaD JunaediJunaedi, D. 2010 "Analisis Kinerja Boiler Pada PLTU Unit 1 PT. Semen Tonasa" Jurnal Sinergi Jurusan Teknik Mesin 74, Kerja Boiler Feed Pump PLTU Cirebon 1X660 MwH JunialY W DjokoJunial, H., Djoko, Y. W. 2018 "Analisa Kerja Boiler Feed Pump PLTU Cirebon 1X660 Mw", Program Studi Teknik Mesin, Universitas 17 Agustus 1945 Fluida" ; BudiarsoR B MunsonF DonaldH T OkiishiMunson, R. B., Donald, F., Okiishi, H. T. 2015 "Mekanika Fluida" ; Budiarso. -Ed. 4, -Jakarta Massa Dan Kalor Serta Efesiensi Pembangkit Listrik Tenaga Uap Pada Berbagai Perubahan Dengan Menvariasikan Jumlah Feedwater HeaterA T RohmatS MadeD JunaidiRohmat, A. T., Made, S., Junaidi, D. 2010 "Kesetimbangan Massa Dan Kalor Serta Efesiensi Pembangkit Listrik Tenaga Uap Pada Berbagai Perubahan Dengan Menvariasikan Jumlah Feedwater Heater," Jurusan Teknik Industri dan Mesin, Fakultas Teknik, Universitas Gadjah MadaAnalisis Bahaya dengan Metode Hazop dan Manajemen Risiko pada Steam Turbin PLTU di Unit 5E ZulfianaA MusyafaZulfiana, E., Musyafa, A. 2013 "Analisis Bahaya dengan Metode Hazop dan Manajemen Risiko pada Steam Turbin PLTU di Unit 5
PembangkitListrik Tenaga Uap, dengan kapasitas 2X25 MW di Mamuju, Provinsi Sulawesi Barat Sekarang kamu mungkin sedang membaca artikel ini menggunakan laptop atau smartphone kamu, yang tentunya butuh tenaga listrik untuk tetap hidup. Namun pernah gak sih terpikirkan bagaimana listrik itu dibangkitkan? Di Indonesia sendiri, pembangkit listrik tenaga uap atau PLTU adalah jenis pembangkit lisrtik yang paling banyak digunakan dan penyumbang energi listrik terbesar ketimbang pembangkit listrik lain. Contohnya adalah pembangkit milik Paiton, di Probolinggo, PLTU Priok di Tanjung Priok, Jakarta Utara, dan PLTU di Bangka Belitung. Oh iya, istilahnya pembangkit ya, bukan pembuat atau pabrik listrik! Menurut Hukum 1 Termodinamika, energi tidak dapat dibuat, maupun dimusnahkan. Namun energi bisa mengalami perubahan bentuk, baik itu energi panas, energi listrik, energi kinetik, dan lain sebagainya. Nah, untuk urusan listrik yang sering kamu pakai ini, sebenarnya mengalami beberapa proses perubahan energi lho! Dari energi kimia yang tersimpan pada bahan bakar, menjadi energi panas, lalu energi gerak, dan akhirnya menjadi energi listrik. Semua perubahan itu membutuhkan uap atau steam sebagai media nya. Penasaran caranya? PLTU ini bekerja sesuai dengan Siklus Rankine atau Rankine cycle jadi agar lebih paham sedikit kita mengulas tentang Siklus Rankine dulu ya! Rankine Cycle Siklus Rankine adalah siklus termodinamika yang merupakan sistem tertutup untuk mengubah energi panas menjadi kerja atau energi gerak dengan bantuan fluida sebagai penghantar energinya, dalam PLTU, fluidanya adalah steam bahasa indonesianya uap, makanya namanya pembangkit listrik tenaga uap. Untuk lebih jelas simak gambar berikut Nomor Keterangan 1 – 2 Menaikkan tekanan fluida, fase cair. Kerja masuk sistem secara isentropik W­in 2 – 3 Menaikkan suhu fluida, fase cair-gas. Panas masuk sistem Qin 3 – 4 Menurunkan tekanan & suhu fluida, fase gas. Kerja keluar sistem secara isentropik W­out 4 – 1 Menembunkan fluida, fase gas-cair. Panas keluar sistem Qout Sesuai termodinamika pada siklus Rankine ideal, panas dan kerja pada sistem proporsional dengan perubahan entalpi dari fluida tersebut. Siklus Rankine bekerja untuk mengkonversi energi panas menjadi energi gerak, maka pada siklus ini efisiensimya adalah seberapa besar energi panas yang dapat dikonversi menjadi energi gerak dari siklus ini. Baca juga Bagaimana Proses Cara Kerja Kincir Angin Membangkitkan Listrik? Cara PLTU menghasilkan energi listrik Lalu bagaimana siklus Rankine ini bekerja pada PLTU? Pada dasarnya, PLTU bekerja persis mengikuti siklus Rankine. Alat-alat atau komponen utamanya pun sama, yaitu pompa, boiler, turbin, dan kondensor atau alat pengembun. Untuk lebih jelasnya yuk simak penjelasan berikut! 1. Menaikkan tekanan Pumping system Ini adalah fase menaikkan tekanan 1 – 2 di grafik Rankine cycle air, atau lebih tepatnya boiler feed water keluaran kondensor dan make-up water air tambahan dipompakan untuk menaikkan tekanannya. Pada siklus Rankine, penaikan tekanan dilakukan ketika fluida berfase cair karena fluida berfase cair tidak dapat terkompfesi incompressible fluid maka menaikkan tekanan pada fase ini lebih efisien penggunaan dayanya. Multi stage pumping Sistem pemompaan ini meningkatkan tekanan air yang tadinya pada keadaan atmospheric pressure atau bisa dari keadaan vakum, < 1 bar menjadi air bertekanan tinggi, lebih dari 150 bar. Untuk mencapai perbedaan tekanan sebesar itu biasanya digunakan pompa multi stage. 2. Menaikkan suhu & menguapkan Boiler Setelah dipompakan, air bertekanan tinggi kemudian diumpankan ke dalam boiler untuk menaikan suhu 2 – 3 di grafik Rankine cycle. Tipe boiler yang biasanya dipakai di PLTU adalah water tube boiler karena tipe ini cocok untuk fluida bertekanan tinggi. Berbeda dengan fire tube boiler, water tube boiler air dialirkan dalam pipa-pipa dan api berada diluar pipa tersebut. Api pada boiler ini berasal dari pembakaran bahan bakar, baik itu batu bara, gas alam, atau bahan bakar lain yang mempunyai nilai kalor bakar yang memadai. Di sinilah sumber energi dari alamProses Pembentukan Serta Kegunaan Batu Bara yang Harus Kamu Tahu! diambil yang kemudian diubah menjadi listrik. Pada boiler yang biasa dipakai pada PLTU, untuk meningkatkan efisiensi biasanya dipasang boiler dengan beberapa section pemanasan air atau steam. Yaitu 1. Economizer atau preheater Di bagian ini, BFW memperoleh panas dari flue gas atau gas buangan. Tujuannya adalah untuk memanfaatkan panas yang masih dibawa flue gas. Flue gas dari pembakaran burner dalam boiler biasanya masih bersuhu 300 – 350 oC, panas yang cukup besar bukan? 2. Main section Di bagian ini, air yang suhunya sudah dinaikkan dari economizer kemudian diuapkan. Bagian ini merupakan bagian terdekat ke burner, karena seperti yang kita semua tau bahwa kalor penguapan latent heat lebih besar nilainya daripada kalor sensibel sensible heat 3. Superheater Semakin tinggi temperatur gas masuk turbin semakin baik efisiensinya, superheater ini dibutuhkan untuk meningkatkan temperatur steam masuk turbin. Meski begitu, temperatur keluaran boiler yang akan diumpankan ke turbin mempunyai limitasi dari kekuatan bahan turbin itu sendiri. Biasanya turbin memiliki range suhu operasi dibawah 550 oC. Jadi, setinggi-tingginya suhu steam akan dibatasi kondisi tersebut. 4. Re-heater Re-heater Sedikit berbeda dengan section sebelumnya yang disusun seri berkelanjutan, yang ada pada re-heater adalah steam keluaran high pressure turbine. Steam keluaran high pressure turbine masih memiliki tekanan yang cukup tinggi, namun kehilangan panas yang lumayan banyak. Untuk menambah efisiensi, keluaran dari high pressure turbine kemudian dipanaskan lagi dalam re-heater sebelum memasuki medium pressure turbine. Baca juga Kenapa Pesawat Bisa Terbang Melawan Gravitasi Bumi? Ini Jawabannya! 3. Ekspansi steam, mengambil energi dari sistem Steam Turbine Bagian ini adalah bagian yang paling berpengaruh dari keseluruhan sistem di PLTU. Energi diambil dari kerja yang dilakukan sistem dengan mengekspansi atau menurunkan tekanan steam 3 – 4 di grafik Rankine cycle menggunakan alat yaitu turbin. Bicara mengenai turbin, prinsip kerjanya adalah berkebalikan dengan kompressor. Jika kompressor mengubah kerja menjadi tekanan, maka turbin adalah mengubah tekanan menjadi kerja. Peristiwa tersebut dikenal dengan ekspansi. Peristiwa perubahan tekanan pada gas, sesuai dengan persamaan gas ideal juga mengalami perubahan volume dan suhu, sesuai dengan persamaan berikut PV = nRT Dimana P adalah pressure tekanan, V itu volume, n itu jumlah substansi, R adalah konstanta gas dan T adlah temperature suhu. Turbin berbentuk bilah-bilah impeller yang disusun secara melingkar. Akibat penurunan tekanan, diameter impeller semakin besar mengikuti peningkatan volumetric flow. Pada PLTU perubahan tekanan sangat besar, dari 170 bar hingga 0,1 bar vakum. Untuk meningkatkan efisiensi kerja dan untuk mempermudah desain, maka perancangan turbin biasanya terdiri dari tiga section yaitu high pressure turbine, medium pressure turbine, dan low pressure turbine yang dipasang linear satu poros putar shaft. yang nantinya terhubung pada generator. Tabel dibawah memuat keterangan tiap section dengan lebih jelas Section Pressure range Temperature steam Keterangan high pressure turbine 170-17,5 bar 550 – 350 oC Dengan range pressure yang tinggi, volumetric flow pada section ini adalah yang terkecil, maka diameter impeller pada turbin ini adalah yang terkecil medium pressure turbine 17,5 – 3 bar 550 – 270 oC Sebelum memasuki section ini, steam terlebih dahulu dipanaskan lagi dalam re-heater medium pressure turbine 3 – 0,1 bar 270 – 50 oC Ini adalah bagian terbesar dari tubin, diameter terbesarnya bisa mencapai 7 meter. Untuk mencegah terjadinya pengembunan dalam turbin, Suhu keluaran tidak boleh mendekati suhu saturated steam pada tekanan keluar Note pressure range dan suhu bisa berbeda tiap PLTU, bergantung pada spesifikasi alat dan kondisi operasi tiap PLTU. 4. Mengembunkan Condenser Untuk memasuki siklus berikutnya, steam harus diembunkan atau dikondensasikan dalam kondensor untuk mengubah fasenya kembali menjadi cair 4 – 1 di grafik Rankine cycle. Kondensor menampung steam keluaran turbin, kemudian oleh air pendingin cooling water yang suhunya lebih rendah. Cooling water berfungsi untuk mengambil panas dari sistem dan mengubah steam menjadi cair. Air kemudian melepas panasnya pada cooling tower. 5. Electric generator Electric Generator Alat ini berfungsi untuk mengubah energi mekanik atau energi gerak dari poros turbin menjadi listrik. Setelah keseluruhan sistem di PLTU berjalan stabil steady state dan spesifikasi listrik yang dihasilkan sesuai, listrik kemudian bisa mulai disinkronkan ke jalur distribusi listrik milik PLN. Perlu diketahui bahwa listrik dari generator ini tegangan nya bisa mencapai Volt. Nah, kini kamu sudah tahu tentang bagaimana listrik yang kamu gunakan dibangkitkan. Prosesnya cukup panjang dan rumit. Jadi gunakan listrik dengan bijaksana, ya! PeningkatanEfisiensi Pembangkit Listrik Tenaga Uap (PLTU) Batubara Kalori Rendah. Dalam usaha pemenuhan kebutuhan energi listrik nasional, sektor ketenagalistrikan masih bertumpu pada pembangkit tenaga listrik berbahan bakar batubara. Data realisasi bauran energi primer tahun 2016, yang menjadi basis penyusunan RUPTL 2017-2026, menyebutkan Penelitian ini bertujuan untuk untuk mengetahui daya dan efisiesi turbin uap di PT. Mega Surya Eratama. Penelitian ini menggunakan siklus rankine sebagai acuan alur yang mengubah panas menjadi energi listrik. Pada penelitian ini digunakan sebuah aplikasi yang menyediakan data yang akurat dari daftar lengkap sifat termodinamika dan fisik untuk air dan uap yaitu steamtab. Penelitian ini difokuskan pada saat beban generator normal dan pada saat beban generator turun yaitu pada saat produksi tidak berjalan. Dari hasil penelitian ini dapat diketahui bahwa besarnya daya pada saat beban generator normal adalah kJ/s. Namun pada saat beban generator terputus atau pada saat kegiatan produksi berhenti daya turbin turun menjadi kJ/s. Efisiensi kerja turbin juga mengalami penurunan, pada saat beban generator normal efisiensi turbin adalah 61,27% dan pada saat beban generator turun efisiensi juga turun menjadi 52,4%. Discover the world's research25+ million members160+ million publication billion citationsJoin for free Volume 4 Nomor 2 Desember 2022 110 ANALISA EFISIENSI TURBIN UAP PEMBANGKIT LISTRIK TENAGA UAP KAPASITAS 7,5 MW Fakrizal Novansyah*1, Luthfi Hakim*2, Dicki Nizar Zulfika*3 *123Universitas Islam Majapahit, Mojokerto E-mail Fakizalnovansyah ABSTRAK Penelitian ini bertujuan untuk untuk mengetahui daya dan efisiesi turbin uap di PT. Mega Surya Eratama. Penelitian ini menggunakan siklus rankine sebagai acuan alur yang mengubah panas menjadi energi listrik. Pada penelitian ini digunakan sebuah aplikasi yang menyediakan data yang akurat dari daftar lengkap sifat termodinamika dan fisik untuk air dan uap yaitu steamtab. Penelitian ini difokuskan pada saat beban generator normal dan pada saat beban generator turun yaitu pada saat produksi tidak berjalan. Dari hasil penelitian ini dapat diketahui bahwa besarnya daya pada saat beban generator normal adalah kJ/s. Namun pada saat beban generator terputus atau pada saat kegiatan produksi berhenti daya turbin turun menjadi kJ/s. Efisiensi kerja turbin juga mengalami penurunan, pada saat beban generator normal efisiensi turbin adalah 61,27% dan pada saat beban generator turun efisiensi juga turun menjadi 52,4%. Kata kunci daya turbin, efisiensi turbin, siklus rankine ABSTRACT This study aims to determine the power and efficiency of the steam turbine at PT. Mega Surya Eratama. This study uses the rankine cycle as a reference for the flow that converts heat into electrical energy. This research uses an application that provides accurate data from a complete list of thermodynamic and physical properties for water and steam, namely steamtab. This research was focused on when the generator load was normal and when the generator load drops, namely when production was not running. From this research, it can be seen that the amount of power at a normal generator load is 12, kJ/s. However, when the generator load was cut off or when production activities stop, the turbine power drops to 6, kJ/s. The working efficiency of the turbine also decreases, when the generator load was normal, the turbine efficiency was and when the generator load decreases the efficiency drops to Keywords turbine power, turbine efficiency, rankine cycle PENDAHULUAN Energi listrik kini menjadi kebutuhan pokok bagi kehidupan manusia. Energi listrik sangat diperlukan baik dalam sektor rumah tangga maupun sektor industri. Dalam bidang industri energi listrik adalah salah faktor penting penunjang kegiatan produksi. Semakin tinggi jumlah produk yang dihasilkan maka semakin tingi pula energi listrik yang dibutuhkan Mulyani and Hartono, 2018. Dengan demikian, beberapa perusahaan memutuskan untuk mendirikan pembangkit listrik untuk menunjang kebutuhan listriknya guna mengoptimalkan hasil produksinya. PT. Mega Surya Eratama merupakan salah satu perusahaan yang mendirikan pembangkit listrik untuk menunjang kebutuhan listriknya. Pembangkit listrik yang ada di PT. Mega Surya Eratama adalah Pembangkut Listrik Tenag Uap dengan kapasitas 2 x 7,5 Volume 4 Nomor 2 Desember 2022 111 MW. Pembangkit listrik ini menggunakan batu bara sebagai bahan bakar utamanya. Ketersediaannya yang melimpah dan harganya terjangkau membuat batu bara menjadi pilihan yang sebagai bahan bakar PLTU Widhiyanto, 2019. Pembangkit listrik tenaga uap memiliki beberapa komponen utama salah satunya yaitu turbin uap. Turbin uap memiliki peranan penting sebagai penggerak generator yang mengalirkan listrik untuk menggerakkan peralatan produksi dan memanfaatkan hasil uap sisa putaran turbin uap atau uap extraksi untuk mengeringkan kertas produksi. Mengingat pentingnya peranan dari turbin bagi proses produksi listrik, maka perlu dilakukan analisa terhadap efisiensi turbin. Efisiensi dari turbin akan mempengaruhi kinerja sistem PLTU. Semakin besar efisiensi turbinnya maka keandalan sistem juga semakin baik Cahyadi and Hermawan, 2015 METODE Penelitian ini dilakukan di PT. Mega Surya Eratama Ngoro, Mojokerto. Waktu penelitian selama satu bulan yakni pada tanggal 10 April 2021- 10 Mei 2021. Penelitian ini difokuskan pada saat beban generator turun, ketika produksi kertas terputus dan saat generator normal operasioanal produksi. Adapun alat dan bahan yang digunakan dalam penelitian ini yaitu 1 Data Log Sheet harian karyawan PT. Mega Surya Eratama, 2 Turbin, 3 Pressure Gauge yang berguna untuk mengukur tekanan fluida gas atau liquid dalam tabung tertutup, dan 4 Aplikasi steamtab yang digunakan untuk menghitung nilai entalphi dan entropi pada kondisi saturated dan superheated. Tabel 1. Spesifikasi turbin Metode yang digunakan dalam penelitian ini adalah metode penelitian kuantitatif, dengan langkah- langkah penelitian dapat dilihat pada gambar 1. Volume 4 Nomor 2 Desember 2022 112 Gambar 1. Diagram alur penelitian Adapun beberapa tahap dalam penelitian ini yakni, 1 mempersiapkan alat dan bahan, 2 mencatat seluruh kegiatan yang terjadi pada proses di tempat penelitian, 3 mencatat data yang dibutuhkan seperti waktu, tekanan steam masuk, dan daya yang dihasilkan oleh turbin, serta penggunaan bahan bakar pada boiler, 4 memasukkan data pada rumus efisiensi turbin, 5 menganalisa dan menyimpulkan mengenai efisiensi turbin yang telah diteliti. HASIL DAN PEMBAHASAN Setelah melakukan penelitian diperoleh data-data yang diperlukan dan dapat dilihat pada tabel di bawah ini. Volume 4 Nomor 2 Desember 2022 113 Tabel 2. Data saat beban generator normal Laju aliran massa uap m Tabel 3. Data pada saat beban generator turun Laju aliran massa uap m Dari data di atas dapat diketahui bahwa pada saat beban generator normal besar tekanan masuk turbin P1 adalah sebesar 4,78 Mpa atau setara dengan 47,8 Bar. Temperatur turbin T menunjukkan angka 470,92 °C. Sedangkan pada saat beban generator turun tekanan masuk turbin menjadi meningkat menjadi 5,02 Mpa atau setara dengan 50,2 Bar. Hal ini menunjukkan bahwa tekanan masuk P1 turbin naik sebesar 0,24 Mpa atau 2,4 Bar. Tekanan masuk turbin pada saat beban generator turun lebih besar dari pada pada saat beban generator normal. Hal ini berfungsi untuk menjaga pressure boiler sebagai bentuk persiapan apabila ada konfirmasi penambahan beban secara tiba- tiba maka operator boiler sudah siap dan tidak terjadi pressure drop. Pada saat beban generator normal temperatur turbin T adalah 470,91 °C dan pada saat beban generator turun yakni pada saat produksi tidak berjalan temperatur turbin turun menjadi 459,61 °C. Temperatur turbin akan turun pada saat beban terputus karena hubungan antara temperatur turbin dengan beban generator turbin berbanding lurus. Pada saat beban turun temperatur akan semakin turun karena temperatur sudah mampu memenuhi kebutuhan pemanasan turbin. Dan temperatur juga bersifat fluktuatif. Data tersebut kemudian dianalisa dengan menggunakan aplikasi steamtab dan diperoleh hasil sebagai berikut Tabel 4. Data hasil perhitungan steamtab Pada saat beban generator normal Pada saat beban generator turun Volume 4 Nomor 2 Desember 2022 114 Setelah hasil dari steamtab diketahui, dihitung menggunakan rumus yang telah ditentukan, besarnya daya pada saat beban generator normal adalah kJ/s. Namun pada saat beban generator terputus atau pada saat kegiatan produksi berhenti daya turbin turun menjadi kJ/s. Efisiensi kerja turbin juga mengalami penurunan, pada saat beban generator normal efisiensi turbin adalah 61,27 % dan pada saat beban generator turun efisiensi juga turun menjadi 52,4 %. Dapat dilihat pada grafik dibawah ini. Gambar 2. Grafik perbedaan daya aktual dan daya turbin pada saat beban normal dan beban terputus Ada berbagai hal yang mempengaruhi besarnya efisiensi diantara adalah laju uap yang masuk ke turbin, tekanan, dan temperatur. Selain itu, hal lain yang berpengaruh pada efisiensi adalah terjadinya loses steam pada sisi boiler dan turbin. SIMPULAN DAN SARAN Dari penelitian yang telah dilakukan di PT Mega Surya Eratama dapat disimpulkan bahwa besarnya daya turbin pada saat keadaan beban generator normal adalah sebesar kJ/s. dan besarnya daya turbin pada saat beban generator turun adalah kJ/s. Selanjutnya, efisiensi turbin pada saat beban generator normal adalah 61,27 % dan pada saat beban generator turun adalah 52,4 %. Hal-hal yang dapat disarankan terkait penelitian ini adalah perbaikan sensor- sensor alat instrumentasi perlu dilakukan agar data yang diperoleh dari penelitian ini lebih 1 kondisi 2Wact Wt Volume 4 Nomor 2 Desember 2022 115 akurat. untuk meningkatkan laju aliran massa diperlukan perbaikan jalur-jalur pipa yang digunakan untuk menyuplai uap ke turbin agar daya turbin meningkat, perbaikan dan pengecekan valve terutama pada sisi valve drainase, agar tidak terjadi loses steam yang menyebabkan peunurunan efisiensi turbin karena valve kurang menutup maksimal ketika turbin beroperasi dalam kondisi normal DAFTAR PUSTAKA Cahyadi, D., & Hermawan. 2015. Analisa Perhitungan Efisiensi Turbine Generator QFSN-300-2-20B Unit 10 dan 20 PT. PJB UBJOM PLTU Rembang. IR. Hariyanto, M. 2010 Boiler dan Turbin. Dalam, Penyusuan Bahan Ajar Kompetensi, Kurikulum Berbasis Negeri, Kurikulum 2007 Politeknik Bandung. Mulyani, D., & Hartono, D. 2018. Pengaruh Efisiensi Energi Listrik pada Sektor Industri dan Komersial terhadap Permintaan Listrik di Indonesia. Jurnal Ekonomi Kuantitatif Terapan, 111, 1–7. Sadono, S. and Effendy, N. 2013. Identifikasi Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin Uap. PLTP Wayang Windu Unit 1, 23, pp. 83–90. Saputro, S. T. 2015. Pengendalian Laju Aliran Massa Uap Masuk Intermediate Pressure Turbine IPT Pada Pembangkit Listrik Tenaga Uap Berbasis Distributed Control System DCS , I, pp. 149–160. Sunarwo and Supriyo 2015. Analisa Heat Rate Pada Turbin Uap Berdasarkan Performance Test. PLTU Tanjung Jati B Unit 3, 113, pp. 61–68. Shlyakhin 1993 Turbin Uap. Jakarata Erlanga. Widhiyanto, F. 2019. Fakta PLTU dan Residu Batu Bara. Beritasatu. ResearchGate has not been able to resolve any citations for this Mulyani Djoni HartonoEffective and efficient electricity consumption is one of the main concerns of Indonesian government. Indonesian electricity consumption has been growing rapidly in the last decade. It is predicted that total electricity consumption will continue grow with faster growth rate. Therefore, immediate actions on the demand side arenecessary through electricity consumption efficiency. The study employs a dynamic panel approach on the panel data of 31 provinces in Indonesia during the period 20014-2013. The results suggest that aggregate electricity demand can be reduced through efficiency on electricity consumption in industrial and commercial sector. The study also reveals that real GRDP, population, and changes in the economic structure have a positive and significant impact on the electricity demand. On the other hand, the effect of real electricity price on electricity demand is not statistically dan Turbin. Dalam, Penyusuan Bahan Ajar Kompetensi, Kurikulum Berbasis NegeriIrM HariyantoIR. Hariyanto, M. 2010 Boiler dan Turbin. Dalam, Penyusuan Bahan Ajar Kompetensi, Kurikulum Berbasis Negeri, Kurikulum 2007 Politeknik Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin UapS SadonoN EffendySadono, S. and Effendy, N. 2013. Identifikasi Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin Uap. PLTP Wayang Windu Unit 1, 23, pp. Heat Rate Pada Turbin Uap Berdasarkan Performance TestSupriyo SunarwoSunarwo and Supriyo 2015. Analisa Heat Rate Pada Turbin Uap Berdasarkan Performance Test. PLTU Tanjung Jati B Unit 3, 113, pp. 1993 Turbin Uap. Jakarata PLTU dan Residu Batu BaraF WidhiyantoWidhiyanto, F. 2019. Fakta PLTU dan Residu Batu Bara. Beritasatu.
ቴωбиእ оφኖμ ፊснዝрХрոኮэχускኯ νθዘቂձиβጮци ሧብሁ
Ժуሑቦ их եያሐዢΙկу епοвուлαр ኩυσо
Зιֆዚዬиዉ εсеլοсιփАፐаλωжошሢτ иτጸዲ к
Трыጏ а αሊуη փэскէсοшеր щопещէдат
А иτቧуሃθηաгα αደув
Уд θлиηΝенусቢփе лևйа
TekananUap Masuk. Efisiensi termal siklus Rankine dapat ditingkatkan dengan menaikkan tekanan saluran masuk. Jika tekanan uap dinaikkan tanpa menaikkan suhu saluran masuk, fraksi kebasahan turbin tekanan rendah (LP) meningkat, yang menghasilkan peningkatan kehilangan kebasahan pada turbin LP. Ketika fraksi kebasahan turbin LP menjadi 8-12% 403 ERROR Request blocked. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID MF8kCBZYnIWoUsw1VdJ_oSszDF2kyKpax3ZkWEw468NZq4PjX-2l8g== . 69 375 472 38 444 495 228 27

pt pembangkit listrik tenaga uap